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SUMMARY 
A hybrid method for computing the flow of viscoelastic and second-order fluids is presented. It combines the 
features of the finite difference technique and the shooting method. The method is accurate because it uses 
central differences. Its convergence is at least superlinear. 

The method is applied to obtain the solutions to three problems of flow of Walters’ B fluid (a) flow near a 
stagnation point, (b) flow over a stretching sheet and (c) flow near a rotating disk. Numerical results reveal 
some new characteristics of flows which are not easy to demonstrate using the perturbation technique. 
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INTRODUCTION 

The study of the flow problems of a class of non-Newtonian fluids, which has come to be 
recognized as elastico-viscous fluids, is not only important technologically, but is also challenging 
to engineers, applied mathematicians and simulationists who are interested in obtaining accurate 
solutions. There are two special categories of elastico-viscous fluids, second-order fluid and 
Walters’ fluid, which have particularly attracted the attention of researchers during the last two 
decades. 

The main difficulty which arises in the solution of the flow problems of these fluids is that the 
constitutive equations of viscoelastic fluids usually generate a higher-order derivative term in the 
momentum equations in comparison with the equations for Newtonian fluids. Because of the 
apparent non-availability of extra boundary conditions, researchers tend to develop a regular 
perturbation solution of the problem, taking the solution for the Newtonian fluid as the primary 
solution and the first-order perturbed solution as the secondary solution. A classical example of 
this technique is the analysis of the two-dimensional flow of Walters’ B fluid about a stagnation 
point given by Beard and Walters.’ 

The equations of motion governing the flow can be reduced to the following non-linear 
ordinary differential equation in f: 

(1) f ”’ +ff” + 1 -5’2 + k(ff” - 2f””’ +f”2) = 0, 

with the boundary conditions 

f ( O ) = f ’ ( O ) = O ,  limf’(q)= 1, 
v- 
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where f is a non-dimensional measure of the streamfunction characterizing the velocity and k is a 
measure of the viscoelasticity of the fluid. 

Beard and Walters' solved the problem defined above by assuming 

f=fo + kf' f (3) 

It turns out that the differential equations for bothf, andf, are of third order each, and since 
precisely three boundary conditions are given on both fo and fl , the solutions of the differential 
equations for fo and f, can be obtained numerically using any standard integration routine. 

The work of Beard and Walters' also attracted considerable attention because of an interesting 
phenomenon of the boundary layer: the velocity in the boundary layer exceeds the mainstream 
velocity. Rajeshwari and Rathna' solved the same problem using the Karman-Pohlhausen 
method of integral momentum equations, but they did not report the aforementioned phenom- 
enon. Frater3 suggested that the overshoot of velocity in the boundary layer might be due to 
seeking a regular perturbation solution of the problem in terms of k (see equation (3)). He gave a 
convincing example to support his argument, although his example was in a different context. 
Other researchers obtained approximate solutions of equations (1) and (2) using either the 
integral momentum equations4 or the perturbation solution te~hnique.~. 

Of late there have been attempts to get more accurate solutions of these equations using 
weighted residual methods (MWR). These methods have the advantage of not requiring the 
problem of numerical integration to be addressed. Further, a greater accuracy can be obtained, in 
principle, by choosing more trial functions. Of various methods belonging to this category, 
perhaps the simplest and most convenient is the collocation point method. Serth7 obtained a 
solution of equations (1) and (2) by taking the set of Laguerre polynomials as the trial functions, 
though he also used the Chebyshev and Legendre polynomials. Unfortunately, in order to obtain 
sufficiently accurate solutions for a Non-newtonian fluid (k ZO), he had to increase the number of 
trial functions sharply with k. For example, for a Newtonian Auid the number of trial functions 
required for six-digit accuracy was five, but for a non-Newtonian fluid (k=O2) it rose to 32. 
Ng8 used the technique of goal programming, which is more common in solving the problems 
occurring in operations research, to reduce the number of trial functions. However, since his 
results were dependent on the choice of collocation points, it was not very clear at what stage the 
process of adding another collocation point must be stopped. Neither Serth7 nor Ng8 gave the 
velocity profiles in their work, so the question of the velocity in the boundary layer overshooting 
its mainstream value remained unanswered. 

It is highly desirable that a numerical technique based on finite differences be developed to 
obtain accurate solutions of the flow problems of elastico-viscous fluids, such as the ones 
characterized by equations (1) and (2). Serth7 remarked that integration techniques such as 
Runge-Kutta or predictor-corrector methods would fail if they were to be applied to the above 
system of equations. Bhatnagar and  zag^,^ seeking the solution of the problem of the flow of a 
second-order fluid between rotating coaxial disks, gave a technique based on finite differences 
which did not use the idea of a regular perturbation expansion. Essentially, they shoved the 
higher-order derivative term arising due to visco-elasticity to the right-hand side of the finite 
difference equations and continued to iterate the resulting equations until they eventually 
converged to a solution. Their technique, although novel, had certain drawbacks. Firstly, it used 
either the forward or backward difference approximation for a derivative rather than the central 
difference, which reduced the accuracy of the solution. Secondly, it used an iterative scheme which 
was only linear. Finally, it contained several parameters which needed to be chosen properly to 
ensure the convergence of the iterative scheme. 
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In the present paper we suggest a hybrid method which is free from the above-mentioned 
drawbacks. It combines the features of the finite difference technique and the shooting method. It 
is accurate since it uses central differences or averages. Its convergence is superlinear or quadratic 
depending on whether the secant or Newton's method is used to locate the missing initial 
conditions. It does not require extra parameters for convergence. Finally, the results can be 
considerably improved by invoking Richardson's extrapolation, pushing the accuracy of the 
method to the order of h4, h being the mesh size. The main ideas behind the method are illustrated 
with the problem of Beard and Walters,' but two more problems are considered: (i) flow of a 
viscoelastic fluid over a stretching sheet and (ii) flow of a viscoelastic fluid near a rotating disk. 
Using the regular perturbation technique, the solution of the former problem has been given by 
Rajagopal et al.," while that of the latter has been given by Elliot.' ' The problem of flow over a 
stretching sheet also admits an exact solution which has recently been noted by Troy et 

It is proposed to apply the technique reported in this paper to compute the solution of the flow 
problems of second-order and Walters' B' fluids between porous plates, disks, etc. 

Since all the problems considered in this paper relate to  Walters' B fluid, it would be 
appropriate to give here the full equations of motion. The constitutive equation for Walters' B 
fluid is 

P i k =  -pgik+zik, (4) 

where Pi t  is the stress tensor, p is the isotropic pressure, gik is the metric tensor of a fixed co- 
ordinate system xi ,  and z i k  for fluids with short memories (i.e. short relaxation times) can be 
written as 

In equation (5) dik is the rate-of-strain tensor defined by 

and t i j  is given by 

Finally, 'lo and ko are the limiting viscosity at small rate of shear and the short-memory 
coefficient respectively, defined by 

ko=Iom zN(.r)dt, 

where N ( z )  is the distribution function of relaxation time 5. 
In deriving equation (5), the terms involving 

j: z"N(z)d.r (n22) 

have been neglected. 

(9) 
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Using the equations of state (5 )  and (6), the equations of motion can be written in the form 

= - Vp + q0V2v - ko + 2 ( ~ .  V)V2v- V2 [(v . V)V] 

TWO-DIMENSIONAL FLOW NEAR A STAGNATION POINT 

In this section we consider the two-dimensional flow near a stagnation point (see Figure 1). 
For a steady two-dimensional motion with velocity components 

u = u(x,  y), v = v(x, y), w = 0 (12) 

the equation of motion (10) becomes 

--+--+ aua2u av a2u (au -+- a,) __ a 2 u ] )  
axax2  ayay2  ay ax axay ’ 

where v = qo/p and k,* = ko/p.  
The equation of continuity becomes 

au av 

ax ay 
- + - = O .  

Making the usual boundary layer approximations of viscous flow theory-namely, within the 
boundary layer u, &/ax, a2u/ax2 and ap/ax are 0(1), y and v are 0(6), 6 being the boundary layer 

1 
X 

Figure 1. Geometry of flow near a stagnation point 
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thickness, and u and kg are O(G2)-equation (13) reduces to 

(16) 

where U ( x )  is the mainstream velocity, which for the flow near a stagnation point is given by 

a3u a3u au a2u au a2u 

axay2  ay3 ax  a y 2  a y a x a y  
U - + U - + - - - - -  

U ( x )  = cx, (17) 

c being a constant. 
We now introduce a streamfunction $ given by 

a$ a$ 
aY ’ a x .  o =  -- u = -  

With this choice of $ the equation of continuity (15) is automatically satisfied. 
It is now possible to define a similarity variable q as 

q = (E) l I 2  Y ,  

such that if 

$ = (vc)1’2f (v), 
equation (16) is transformed to equation (1) with 

k = k,* c Jv. 

The boundary conditions 

u=O and u = O  aty=O, u-*U(x) asy+co 

transform to equation (2). 
Davies [4] has suggested imposing the condition 

f “’(0) = - [ 1 + kf”2(0)] (23) 

to get the extra boundary condition required to solve equation (1). This condition essentially 
implies that as k+O, the solution must approach the Newtonian solution. 

However, we note that we just need the boundedness of all the derivatives off at q = O  to get the 
required solution of equation (1) subject to the boundary conditions (2). Thus, if one knows f ” ( O ) ,  
it should be possible to get a Taylor series expansion off around q=O from equation (l), 
notwithstanding the higher-order derivative occurring in the equation in the k-term. This idea 
suggests the following scheme. 

Let 

Y ,  =J; Y 2  =f ‘ 9  y3 =f ”, y ,  =f’” . (24)  

kY 1 Y k  = - Y 4  - Y 1 Y 3 - 1 + v: + k ( 2 h  Y i - Y :  1 = 0 (25)  

then equation (1) can be rewritten as 

and the boundary conditions (2) and (23) as 
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Now, by assuming 

f “(0) = s, (27) 
one can treat equation (25) as an initial value problem and iterate on s until the terminal 
asymptotic condition in (26)  is satisfied. Indeed, this is how Teipel13 attempted to get the solution 
of the corresponding problem for a second-order fluid. Simple though this scheme appears to be, 
it has certain drawbacks. 

Firstly, note that there is a singularity at q =O in the ODE (25), which means that in order to 
start the numerical integration by one of the standard integration routines, e.g. the Runge-Kutta 
method, one has to employ some other technique for obtaining the solution up to some value of q, 
say qc. Since f (q) is O(q2) at q =0, the singularity is quite strong at the origin. Therefore the value 
of qc from where the Runge-Kutta method is to be applied must be sufficiently large to avoid 
problems of numerical instability. As a result, if one employs the Taylor series expansion to 
obtain the solution in O<q<q,, a large number of terms will be needed to match the accuracy 
demanded by the Runge-Kutta method. TeipelI3 took the expansion up to the ninth derivative in 
order to obtain the required accuracy. This can become quite unwieldy for more complicated 
problems. 

There is, however, a second drawback which is even more serious. Since the leading term yk of 
the ODE (25), besides being multiplied by y , ,  which is O(q2), is further multiplied by k, the initial 
value problem can become highly unstable numerically for k+O. Thus it may become extremely 
difficult to get the solution for fluids which are slightly non-Newtonian. 

With these drawbacks in view we now endeavour to develop a technique which is applicable for 
all values of k for which a solution is admissible, including the case k=O. We rewrite equation (1) 
as 

Y j  + Y l Y ,  + 1 - Y :  + k(Y1Y;- 2Y2Y; + y 3 ) = 0 .  (28) 

Let us introduce a mesh defined by 

qi=ih, i=O,  1 ,  2 , .  . . , N ,  (29) 

where N is a sufficiently large number. 

following formulae: 
It now seems natural to replace the first and second derivatives in equation (28) by the 

This leads to the system of equations 

The boundary conditions (2) become 
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One can see from equation (31) that y: can be found from it if y t  is known regardless of whether 
k is zero or not, because y,O=O. (Note that one does not need the value of y;' because it is 
multiplied by y,O which is zero.) This is the basic idea of the present method. The higher-order 
derivative occurring in the coefficient of k in equation (1) does not hinder the development of the 
solution at all. 

To construct the rest of the solution, we proceed as follows. We obtain y: and y: from 
equations (32) and (33) respectively. At the next mesh point, since y: and y: are known, y: can be 
calculated from equation (31) and y: and y: from equations (32) and (33) respectively. Continuing 
in this manner, y i ,  y i  and y i  can be computed at each mesh point. 

However, in practice y: is not known. It must be chosen so that the asymptotic boundary 
condition y f =  1 is satisfied. Thus the problem now reduces to finding an appropriate yJ" for 
which y f =  1. One can use the shooting method in conjunction with the secant method or some 
other zero-finding algorithm to precisely locate this value of y:. 

The procedure given above is the simplest version of the method. Since we have used the 
forward difference formula to approximate the first derivatives, the accuracy of the method is only 
of order h. This can be improved to 0 (A2) if we use the central difference formula and the averages. 

Using the approximation 

we rewrite equation (28) as 

Equation (36) can be explicitly solved for y{+ '. We have 

+2y',~',-'+2h(y',)~ 
- 2y', + y',- 1 

Equations (32) and (33) are also replaced by the more accurate approximations 

y i +  1 = y i  +&h(y{ + y i +  1 1, 
y i+ 1 = yi ++h(yi + yi+1 1- 

Since we have replaced the first derivatives in equation (28) by differences involving the -values 
of y3 at two non-adjacent mesh points, we have a situation similar to that encountered in using 
the midpoint formula 

Y.+ 1 =y.- 1 + 2hf(X", Y.) 
for the solution of the IVP 

Here one must know the value of y, to start the algorithm (40). This difficulty is resolved by 
finding its value by some other means. 
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For the algorithm under consideration we obtain the value of y: within an accuracy O(h2)  by 
expanding y: in a Taylor series expansion around q = 0. We have 

h2 
y:=y:+h(y:)’ + +:)”+. . . . (42) 

Replacing y i  by f”(O), we have 

y:=f”(O)+hf”’(O)+~f h2 iv (O)+ . . . . (43) 

Iff”(O)=s as before, thenf”’(0) can be determined in terms of s from equation (23). To obtain 
the value off”(O), we differentiate equation (1) and set q=O. We have 

f i V ( 0 )  = 0. (44) 

(45) 

Therefore 

y: = s - h(l + k?). 
Now the integration proceeds as follows. First an approximate value off”(0) is chosen and y: is 

calculated from equation (45). Then y j  and y,’ are obtained from equations (38) and (39) in that 
order. At the next cycle, since the values of y: and y: have become available, y i  is calculated from 
equation (37). Then y i  and y: are calculated from equations (38) and (39). The cycle is repeated 
until the values of y,, y, and y, have been calculated at all the mesh points. Note that these values 
are computed in a specific order. First y 3  is computed, then y 2  and finally y l .  Once again a zero- 
finding algorithm can be chosen to pinpoint the value of s which would lead to $= 1. 

RESULTS AND DISCUSSION 

The algorithm described by equations (37H39), with equation (45) providing the starting value of 
y,, was translated into a FORTRAN program which was then run on the Honeywell Multics 
at the University of Calgary. The program incorporated the feature of improving the accuracy 
of the solution by invoking Richardson’s extrapolation. First a few trial values of f”(0) were 
chosen to estimate the value off’(c0). Once a reasonable value had been found, the secant method 
was used to refine the value off”(0) iteratively. The iterations were stopped when two values of 
f“(0) differed by less than lo-’’. For the refinement of the solution the stepsize was halved and a 
new solution obtained. For this solution the previously obtained value off”(0) turned out to be a 
reasonably good starting value. Finally, Richardson’s extrapolation was used to get more 
accurate values off, f’ and f ”  at the mesh points. 

The program was initially run for values of k=O,  0.1, 0.2 and 0.3. It took 33s to get all the 
results. In Figure 2,fis plotted against q for the above values of k. For the same values of k , f ‘  is 
plotted against q in Figure 3. The most interesting feature of these results is that the velocity in the 
boundary layer oscillates about its value in the mainstream for sufficiently large values of q when 
k#O, i.e. for the viscoelastic fluids, though the oscillations damp out with increasing q.  This 
phenomenon is more pronounced for higher values of k (e.g. k = 0.3), but it was also observed for 
low values of k(k=0.05). A similar observation was also reported by TeipelI3 for the flow of a 
second-order fluid near a stagnation point. These results thus vindicate the conclusions of Beard 
and Walters. 

An attempt was made to find the range of values of k for which it was possible to obtain the 
solution by the present method. It was discovered that there existed a critical value of k, say k,, 
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Figure 2. Variation offwith t~ for various values of k. Flow near a stagnation point 

beyond which no solutions could be found. To see if this value of k, was a turning point of the 
solution, the roles of k and s ( = f ” ( O ) )  were reversed in seeking the solution, i.e. rather than finding 
s for a given k, k was obtained for a given value of s; s was increased monotonically from its 
starting value of 1.232 588 ( f”(0)  for k = 0) and the corresponding values of k calculated using the 
present method. The graph off”(0) against k is shown in Figure 4. From the results generated it 
was found that 

k, = 0.325 7864 

For k > k, no solution could be found, but it appears that dual solutions exist for k < k, for all 
non-zero values of k. It is not necessary that both of these solutions are stable. It looks quite likely 
that the solutions on the upper branch of the curve in Figure 4 are unstable. However, one must 
undertake a stability analysis to ascertain the nature of these solutions. This has not been 
attempted here. 
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Figure 3. Variation off’ with ’1 for various values of k. Flow near a stagnation point 

FLOW OVER A STRETCHING SHEET 

In this section we consider the flow of a Walters’ B fluid over a stretching sheet (see 
Figure 5). Here the motion is caused entirely by the stretching of the sheet. This problem is 
important in the polymer industry. The equation of motion for the problem is the same as 
equation (16) except that now U=O,  which modifies equation (1) to 

f”’ +ff” -f” + k(ff‘” - ylf’” +f’”) = 0. (46) 

u=cx and u = O  aty=O u+O asy-+oo, (47) 

The boundary conditions (22), because of the motion of the sheet, become 

which transform to 

f ( O ) = O ,  f’(O)= 1, limf‘(q)=O. 
v-00 
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0.0 0.1 0.2  0.3 0.4 

Figure 4. Variation off"(0) with k. Flow near a stagnation point 

k +  

Rajagopal et al." solved equation (46) by taking a regular perturbation expansion off in k, 

(49) 
Employing the method developed in the present paper, we shall solve equation (46) without 

making any approximation. The procedure for solution is very similar to that given for the flow 
near a stagnation point. We shall therefore only give the results here. 

The value of k was increased from zero at intervals of 0.05 and the missing conditionf"(0) 
determined. In Figure 6, f is plotted against q for various values of k. In Figure 7, f '  is plotted 
against q for the same set of values of k. One can conclude from these figures that as k increases, 
the velocity decreases, which effectively increases the boundary layer thickness. These results are 
qualitatively in agreement with those obtained by Rajagopal et al." It would be of some interest 
to compare the value of T, the dimensionless shear stress at the boundary given by 

retaining only the first-order terms. Its exact solution, found later by Troy et a1.,12 is 

f (q) = (1 - k)'/' { 1 - exp [ - q/( 1 - k)'/2] }. 

T = (1 - k)f"(O),  (50) 
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Figure 5. Geometry of flow over a stretching sheet 
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Figure 6. Variation offwith q for various values of k. Flow over a stretching sheet 
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Figure 7. Variation off' with for various values of k .  Flow over a stretching sheet 

using the present method, the #perturbation technique and the exact solution (49). These results 
are presented in Table I. For the values of k considered here, the values of t obtained by the 
present method and the exact solution were in complete agreement until the last digit in the table. 
It can be further seen from the Table that the perturbation method systematically underestimates 
the values o f t  with increasing values of k. 

FLOW NEAR A ROTATING DISK 

We now consider the flow of a Walters' B fluid near a disk which is rotating about the z-axis 
with uniform velocity o (Figure 8). Assuming steady rotational symmetric flow with the velocity 
components (u,, uo, uz), Elliot' obtained the following system of equations: 

(51) 

G"- HG'-2FG- k ( H G  +4FG-2F1G')=O, (52) 

F " - HF' - F ' + G2 - k(HF" + 4FF" + 2G") = 0, 
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where 

Table I. Variation of 7 with k for flow past a stretching sheet 

k 
Present Perturbation 
method method 

0 - 1~oooo - 1.oOOo 
005 - 0.9747 -0.9738 
0 1  - 0.9487 - 0.945 1 
0 2  - 0.8944 -0.8802 
0 3  -0.8367 - 0.8053 

Figure 8. Geometry of flow near a rotating disk 

2F + H’ = 0, 

P = HI’ - HH’ + k( 3H’ H ”  - HH ”), 

4 = r o F ( 0 ,  00 = G(0, u, = (vo)”2H([) ,  

P = P ( Z )  = SVWP(i),  k =  k o o / q o .  
Here i is the dimensionless distance from the disk defined by 

~=z(o/v)”*. 

(53)  

(54) 
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The boundary conditions of the problem are 

v,=O, vo=rw and v,=O at z=O, v,+O and vo+O a s z - + a ,  (57) 

F(0) = 0, H(0)  = 0, P(0)  = 0, G(0)  = 1, (58)  

F(w)=O,  G(w)=O. (59) 

which transform to 

Following the standard procedure, Elliot’’ expanded F,  G, H and P in powers of k,  retaining 
only the first-order terms of k. Unfortunately, his equations for F ,  , G ,  , HI and P, , the first-order 
perturbations, had a mistake in sign. The values for these quantities should have their signs 
reversed. We shall now solve the boundary value problem (BVP) defined by equations (51H54)  
with the boundary conditions (58) and (59) without using the perturbation technique. 

Let 

F’=S, G’= T; (60) 
then equations (51) and (52) become 

S’ - H S  - F + G2 - k(HS” + 4FS’+ 2 T 2 )  = 0, 

TI- HT-2FG-  k ( H T ” + 4 F T  -2ST)=0. 

Discretizing equations (60H62)  and (53), using the finite difference approximations 

and the averages, we obtain 

(65) 

(66) 

(67) 

(68) 

F j + l  =Fj++h(Sj+Sj+l) ,  

Gj+l  =Gj+$h(Tj+ Ti+’), 

H’+ 1 = HJ- h(Fj  + F j +  1). 

Equation (54) can be integrated directly to give the pressure P at any point. 
The values of S’ and T’ can be obtained by expanding them in a Taylor series around q = O .  

We need to differentiate equations (51) and (52) to obtain F”’(0) and G”‘(0). I f  

F‘(0) = S, G’(0) = t, (69) 
we have 

S’ = s +  h( - 1 +2kt2)- h2(t+ 2ks), 

T = t - 2 h k ~ t  + h2 [S + k t  - 2k2t(s2 + t’)], 

the error in each of the above results being O(h3). 
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The integration can now be performed as follows. First some initial guess values are assigned to 
F’(0) and G’(0). S’ and T 1  are then calculated using equations (70) and (71). F’, G’ and H’ are 
next determined from equations (66H68). At the next cycle S2 and T 2  are computed from 
equations (64) and (65). Again F 2, G 2  and H are calculated from equations (66H68). As in the 
case of the flow near a stagnation point, the order in which the quantities S,  T, F ,  G and H are 
calculated is important. The order indicated above is followed for the subsequent cycles. The 
integration is carried out until the values of the desired quantities are obtained at all the mesh 
points. 

Note that we need to satisfy the two asymptotic boundary conditions (59). In fact s and t must 
be found by a shooting method so as to fulfil the boundary conditions (59). Here, amongst several 
choices, one can apply a variation of the secant method for two unknowns or use Newton’s 
method. We chose the latter approach since it requires only one set of initial guess values. An 
accuracy of 10-l’ was achieved after only five or six iterations. Once again Richardson’s 
extrapolation was used to improve the accuracy of the results. 

The flow was computed for values of k from zero to unity at intervals of 0.1. The most 
significant physical quantity of interest is the turning moment (or torque) for the disk with fluid 
on both sides. In dimensionless form it is given by 

M = - G’(0). (72) 

M =0.616+0208k, (73) 

The corrected result of Elliot” is 

which shows that the main effect of elasticity of type B’ on a rotating disk is to increase the 
magnitude of the turning moment on the disk. This result appears to be in agreement with that 
derived by Rathna.14 However, when the BVP was solved without making any approximation, 
i.e. using the present method, we got the results shown in Table 11. We note from the table that M 
initially increases with k until it reaches its maximum value for k = 0.330 97. When k is further 
increased, M starts falling. It becomes less than the corresponding value for a Newtonian fluid for 
k>0.734 38. For still larger values of k the value of the turning moment on the disk is less than 
that for a Newtonian fluid. This behaviour of M with k is shown in Figure 9. 

Table 11. Variation of M with k for flow 
near a rotating disk 

k M 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0-8 
0.9 
1.0 

0.61494 
0.63314 
0.64587 
0.65168 
0.65050 
0.64358 
0.63276 
0.61971 
0.60562 
0.59125 
0.57704 
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Figure 9. Variation of M ,  the turning moment of the disk, with k. Solid line denotes values obtained by present method. 
Dashed line denotes values obtained by perturbation method 

CONCLUSIONS 

In this paper we have presented a hybrid method for computing accurately the flows of 
viscoelastic fluids. The method combines the features of the finite difference technique and the 
shooting method. By using central differences for the derivatives, and averages, an accuracy O(h2)  
is preserved, which can be further enhanced to O(h4) by invoking Richardson’s extrapolation. The 
shooting method is used to find the missing initial conditions, which can be systematically 
determined using any suitable zero-finding algorithm. 

The present method operates on the full set of equations rather than on the perturbed sets. 
Moreover, it is applicable for all values of k, including k = O  and very small values of k. The 
application of the method can lead to somewhat unexpected results, as shown in the present 
paper for the problems of flow near a stagnation point and near a rotating disk. Using the 
perturbation technique, it would not have been easy to predict the existence of a turning point in 
the solution for the problem of flow near a stagnation point. Similarly, the increasing and then 
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decreasing behaviour of the turning moment of a rotating disk with increasing k could not be 
predicted with ease using the perturbation technique. 

It is hoped that the application of the present method will lead to many other interesting results 
for flow problems of viscoelastic fluids between porous channels, disks, etc. The results of these 
investigations will be reported in future communications. 
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